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Abstract: Protected areas (PAs) are the leading policy to lower deforestation. Yet
resistance by land users leads PAs to be created in remote sites, lowering impact. Re-
sistance continues after PA creation, with both illegal deforestation and advocacy for
PADDD, that is, reducing PA status (downgrading) or PA size (partial or full era-
sure, downsizing or degazettement). For the Brazilian Amazon, we estimate 2010–
15 forest impacts of 2009–12 PA erasures, on average and for distinct states. Before
panel-DID regression, to find similar controls we matched using static characteristics
and 8–10 years of pretreatment deforestation. PA erasures should raise deforestation
if erased PAs faced and blocked pressures. Consistent with this, three conditions for
“environmental selection” yielded little short-run impact from PADDD: low pres-
sures, unblocked higher pressures, and pressures blocked less by those PAs selected
for erasures. Yet for “development selection,” with PA erasures in sites with pressures
plus enforcement, PADDD yielded increased deforestation.
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BRAZIL ’S AMAZONIAN REGION CONTAINS half of the world’s tropical rainforest
and is a biodiversity hot spot (Campos-Silva et al. 2015)—yet Brazil is the globe’s sev-
enth largest greenhouse gas (GhG) emitter, due mostly to conversion of Brazilian Am-
azon rainforest for production (Azevedo-Ramos andMoutinho 2018). Protected areas
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(PAs) have been one leading conservation strategy, in response. Since the 1980s
(Veríssimo et al. 2011; Nogueira et al. 2018), Brazil’s PA system has expanded, with
commitments at the World Parks Congress in Bali, 1992 UN conference on environ-
ment and development, and Conventions on Biological Diversity in 2004 and 2010
(Visconti et al. 2019). In the 2016 Paris agreements, Brazil committed to lower
GhG emissions to 43% below 2005 levels by 2030, mainly through reductions in de-
forestation (Gallo and Albrecht 2019). PAs now cover over 30% of Brazil’s territory
(UNEP-WCMC 2020) and over 50% of its Amazon (Campos-Silva et al. 2015)
and on average have reduced deforestation (e.g., Pfaff et al. 2015).

Yet in Brazil, as elsewhere, PAs’ impacts are constrained by PAs’ locations. Within
the Brazilian Amazon, outside high-pressure regions such as the Arc of Deforestation
few land uses are profitable, and thus the forest often remains standing without any
formal protection at all (Pfaff et al. 2009). Thus, PAs sited outside of high-pressure
areas often avoid less deforestation than expected in the short run (Nolte et al.
2013), though they may limit future deforestation by discouraging infrastructure
(Herrera 2015). PAs’ impacts are also constrained by levels of enforcement, which
are uneven across space, with illegal deforestation inside some PAs (Carranza et al.
2014; Jusys 2016, 2018; Kere et al. 2017; Amin et al. 2019).

Adding to such spatial considerations, for the Brazilian Amazon temporal dynamics
of policy also matter. Multiple federal conservation policies helped to lower deforesta-
tion from 2004 to 2012 by over 70% (Assunção et al. 2015). However, during 2012 to
2020 deforestation rates then rose again (INPE 2019). The initial fall in deforestation
followed from increases in PAs’ area, the enforcement of PAs, and other policies. In
turn, the recent rise in deforestation rates has followed from lowered enforcement of
policy and even a “license to deforest,” including within PAs (Carvalho et al. 2019;
Ferrante and Fearnside 2019).
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This lowering of effective protections even had a formal aspect, with legal challenges of
multiple forms: permitting additional productive activities inside some PAs (downgrad-
ing), partially erasing some PAs, in order to decrease their sizes (downsizing), and even
fully erasing some PAs (degazettement) (Mascia and Pailler 2011). These protection-
lowering events—collectively known as “PADDD”—accommodated industrial-scale
resource extraction and development and, to a lesser degree, local land pressures as well
as specific land claims (Golden Kroner et al. 2019; Naughton-Treves and Holland
2019; Qin et al. 2019).

After very few PADDD events occurred in the Brazilian Amazon during 1970–
2000, PADDD’s pace rose especially after 2008, when by 2015 44,000 square kilome-
ters of PAs were lost to reductions in sizes, that is, the partial or complete erasures of
some PAs (Campos-Silva et al. 2015; Golden Kroner et al. 2019). This acceleration in
the lowering of protection reflected a shift in the political economy of conservation in
Brazil, including as expressed through the increasing scarcity of funds and human re-
sources allocated for the management of these PAs (Bernard et al. 2014; Ferreira et al.
2014; Campos-Silva et al. 2015).

We evaluate the forest impacts from PA size reductions in the Amazon, in light of
their uneven siting. Our contributions are the following. First is a conceptual frame-
work showing that where size reductions occur affects forest impacts, since to have im-
pact requires that PAs faced and blocked pressure. Second, in light of that framework,
we focus not on average PADDD impact for an enormous and diverse region but im-
pacts by context. Empirically, we check whether selection across contexts generated or
avoided impacts.

To reduce bias in our empirical impact estimates, within each context, we use match-
ing with observed characteristics of forested lands that predict deforestation risk as well
as the chance a PA is size-reduced. That includes effectively matching on pre-size-
reduction forest impacts of our population of PAs, which vary with pressure. Given that
a credible counterfactual is critical, following synthetic-control literature (Arkhangelsky
et al. 2021; Ben-Michael et al. 2021) we match units based on pretreatment forest losses.
We then employ panel regressions as DID, using two-way fixed effects (TWFE) plus new
difference-in-differences (DID) estimators which better test our main identification as-
sumption, that is, parallel trends.

Framing the relevant political economy conceptually, economic development inter-
ests propose PADDD where they would gain the most on net from deforesting those
PAs. Given their contrasting objectives, conservation interests should bargain harder
against PADDD when they gain more from any given PA (Tesfaw et al. 2018; Keles
et al. 2020). If such interests bargain, many locations for PADDD are possible.

Empirically, in a limited literature on risks of PADDD events, it has been found
that accessibility of a PA to market, the PA’s size, and the PA’s rate of internal defor-
estation all increase the likelihood, or the risk, of a PA being reduced in size (Pack et al.
2016; Symes et al. 2016; Tesfaw et al. 2018; Keles et al. 2020). Interestingly, that set of
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results for PADDD risks—including for size reductions (see Keles et al. [2020] for the
entire Brazilian Amazon)—make it hard to predict whether selective PA erasures raise
deforestation.

For instance, if the reason that a PA is selected for size reduction is that profitable
internal deforestation has already occurred (perhaps one “environmental PADDD-
selection rule”), then clearly a size reduction for that PA may have no impact, as no more
deforestation is likely to occur. This is a relevant case, given that as just noted prior in-
ternal deforestation has increased the risk of size reductions (Tesfaw et al. 2018; Keles
et al. 2020). If instead a PA is reduced in a remote location, with low pressures (another
possible environmental selection), again it is clear that size reduction for that PA may
have no impact on deforestation—but for the opposite reason, that is, there is low de-
forestation pressure. Yet the result that size reductions are more frequent when near
to markets suggests that many size-reduced PAs did face economic pressures, which
could well indicate some selection of PADDD locations by local economic-development
interests. If some of those PAs blocked pressures, at least somewhat, reducing their
sizes could raise deforestation.

The few empirical results for PADDD’s impacts on forest address only somany cases—
and are mixed. Golden Kroner et al. (2016) report that 150 years of legal changes in the
Yosemite National Parks in the United States, with infrastructure to support rural set-
tlement and resource extraction, increased habitat fragmentation. Elsewhere, higher de-
forestation and greenhouse gas emissions appear to have resulted fromPADDD inPeru,
as well as in Peninsular Malaysia (Forrest et al. 2015). Yet for Rondônia State, in the
Brazilian Amazon, where economic pressure is strong, Tesfaw et al. (2018) found no
average short-term forest impact. That is consistent with size reductions being where sig-
nificant internal deforestation has already occurred. Considering the entire Brazilian
Amazon, Pack et al. (2016) employ difference-in-differences to separate PADDD’s in-
fluence on 2002–11 deforestation from those of fixed other factors. Like Tesfaw et al.,
Pack et al. found no impact, that is, erased and ongoing PA parts had similar forest losses.

Such policy impacts differ over time and over space for geographic, economic, and
also political reasons. For instance, just as infrastructure in remote geographies may
not immediately increase output or forest losses (Pfaff et al. 2018), private land-use
responses to PADDD similarly may unfold slowly over time. Impacts’ magnitudes may
themselves vary over time, due to shifts in governance and thus expectations and invest-
ments (per recent shifts see, e.g., Carvalho et al. 2019; Escobar 2019; Ferrante and
Fearnside 2019). For instance, while as noted Brazilian Amazon deforestation rates fell
for some years after 2004 due to policy, rates have been rising since 2012. Reflecting
the details of recent PA size reductions within rigorous estimation seems worthwhile
to understand impact in temporally and spatially varied contexts. Which agencies domi-
nate bargaining affects PADDD sites, and thus impacts, across and within contexts.
Given variable political-economic dynamics across the Amazon, agencies’ influences likely
vary by state.
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Considering all of these influences on the deforestation impacts from selective re-
ductions in PAs’ sizes, we evaluate impact for enacted 2009–12 PA size reduction
(downsizing/degazettement) on 2010–15 forest losses (always post-size-reduction).
Like Pack et al. (2016), we study all of the Brazilian Amazon. We extend their results
by including more recent PADDD events, as well as more recent deforestation. Crit-
ically, we also distinguish multiple contexts for PAs over which impacts of PA erasures
should differ.

We find that selection for size reductions of Brazilian Amazon PAs led to three con-
texts in which little or no forest impact is found from size reductions—at least in the
short run. One of these contexts is less common yet still worth noting, as site selection
for PADDD within the context is not required for no or low impact. For low-pressure
contexts, for example, outside the “arc of deforestation,” there is simply little forest
loss and thus little PADDD impact. We suspect that environmental interests push
PADDD into this context.

Yet the dominant “environmental selection” story is high-forest-loss locations within
pressured contexts. For a pressured setting with some enforcement, we find that those
PAs selected for 2009–12 reduction had blocked some forest loss before size reduction.
Relative to constant-sized PAs with similar partial effectiveness, erasures had no impact.
For higher-pressured settings where on average the PAs selected for erasures had not
blocked pressure, there were no constant-sized PAs that had performed so poorly. Our
third case for no impact from “environmentally selected” erasures is just that those size-
reduced PAs blocked no pressures, that is, they had deforestation like fully unprotected
areas before and after reductions.

Some size-reduced PAs actually performed as well as constant PAs before their size
reductions. They are reduced PAs that faced and blocked pressure prereduction—pre-
cisely conditions where erasure should and did increase loss of forest. We suspect that
development interests push PADDD toward such contexts.

The rest of the paper is organized as follows. Section 1 offers background concern-
ing the region, then a framework for considering where (partial) erasures of PAs are
more likely to increase forest loss. Next, section 2 presents our empirical strategy, while
section 3 provides our estimates for forest impacts resulting from PA size reductions—
critically including for distinct PA subsets. Then section 4 discusses.

1. BACKGROUND

1.1. Deforestation and Forest Protection in the Brazilian Amazon

BrazilianAmazon deforestation rose during the 1960s, as a military dictatorship opened
up the region (Hargrave and Kis-Katos 2013; Souza-Rodrigues 2019). To support set-
tlement and economic activities, roads were built and incentives given, interacting with
insecure land tenure to yield land grabbing and illegal logging (Araujo et al. 2009).
When the economy stabilized in the 1990s, deforestation increasingly was driven by ex-
ports, as the country became a major supplier of beef and soybeans (Arima et al. 2014).
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Given international interactions and domestic public concerns (Naughton-Treves
et al. 2005; Veríssimo et al. 2011), the Brazilian Institute of the Environment and
Renewable Natural Resources (IBAMA) was created to enforce environmental laws
(Arima et al. 2014). PAs were established (fig. 1) to conserve forest habitats and the
required share of forest (“legal reserve’) on private land rose from 50% to 80% (Souza-
Rodrigues 2019). Yet enforcement was poor (Naughton-Treves et al. 2005; Veríssimo
et al. 2011), and deforestation rose until a peak in 2004, when 26,800 square kilome-
ters (km2) of forested land were cleared (fig. 2).

Given multiple federal policy responses, and the 2008 economic crisis (Arima et al.
2014; Soares-Filho et al, 2014; Assunção et al. 2015), deforestation fell sharply from
2004 to 2012, when it was 4,571 km2. In 2002, the Amazon PA Program (ARPA)
was initiated to extend the PA network and improve PA management. To enforce re-
lated laws, the Real-Time System for Detection of Deforestation (DETER), using sat-
ellite detection, was implemented by the National Institute for Space Research (INPE)
during the first phase of an Action Plan to Prevent and Control Deforestation in the
Amazon (PPCDAm-I) (Veríssimo et al. 2011; Arima et al. 2014; Souza-Rodrigues
2019). DETER helped to identify and thus act more quickly on illegal deforestation
Figure 1. Timing of protected areas (PA) designations (designed pre-2001) and PA size re-
ductions. Source: author (using Conservation International and WWF [2017]; IUCN and
UNEP-WCMC [2016], creation dates confirmed in Brazilian data).
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(Assunção et al. 2017). PPCDAm-II (2009–11) then added federal measures such as
more frequent inspections, as well as applications of sanctions by IBAMA; a list of “pri-
ority” municipalities, which were subject to stricter enforcement (Arima et al. 2014;
Assunção et al. 2015; Souza-Rodrigues 2019); new punishment instruments, including
embargoes and seizures; and the conditioning of rural credit access upon compliance with
environmental regulations (Gibbs et al. 2016).

By 2012, however, the trend of falling deforestation rates had ceased. From 2012
onward, deforestation rates again started to rise, as a result of political change that
led to a weakening of environmental laws (Campos-Silva et al. 2015; Fearnside
2016; Rochedo et al. 2018). For example, a 2012 revision of the Forest Code provided
amnesties to landowners whose legal forest reserves had been cleared before 2008
(Soares-Filho et al. 2014). In addition, environmental requirements were lowered, fur-
ther investments in infrastructure (such as highways and dams) were promoted, and
the PA network was undermined (Fearnside 2016; Naughton-Treves and Holland
2019). PAs had been reduced in size as early as 1970, yet this phenomenon was accel-
erated, mostly to accommodate infrastructure projects, settlements, and expansions of
agriculture (Mascia and Pailler 2011; Pack et al. 2016; Golden Kroner et al. 2019).
Specifically, during recent decades, size reductions were enacted for 40 PAs in the
Brazilian Amazon—covering an area of 157,377 km2—with 25 PA erasures concen-
trated between 2009 and 2012, covering 42,113 km2 (fig. 1). The recent election of and
Figure 2. Deforestation in the Brazilian Amazon. Source: author (using INPE 2019)
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actions by President Jair Bolsonaro also have sent clear signals about the prioritization
of economic growth over conservation.1 Thus, the net incentives to clear forests have
been increased. Forest fires, which have doubled compared to last year, are in part a
consequence of such deforestation (Casarões and Flemes 2019; Escobar 2019).

1.2. Conceptual Framework: Where PAs and PA Size Reductions

Have Impacts on Forests

Frontier deforestation for agriculture is often said to follow core patterns observed
since von Thünen (Angelsen 2007, 2010; Sims 2014). If a risk-neutral agent makes
the choice to clear forest on unprotected parcel i, she earns rents Yi, equal to the price
in the nearest market, p, times yield which is a function of land quality, f (Qi). From
those revenues, we must subtract transport costs for getting output to market, which
makes profits (pi) a function of distance to market. While transport costs might be
constant per unit distance, generally transport costs will make agricultural profits a
function of distance, p(p, Qi, di), which falls with di. Forest clearing then falls with di
and ends at �di, where p(di) equals zero

2 (fig. 3).
If forest clearing is illegal on the parcel—in PAs or on private lands, given regula-

tions—then enforcement with probabilistic apprehension and fines reduces expected
profits by an expected fine F(di) 5 F × Prob(di) (“typical” enforcement regimes support
assumptions of imperfect monitoring; Albers 2010; Sims 2014). That is a function of
distance, since public agencies are located in market cities; thus, the probability of ap-
prehension is a decreasing function of distance because, just like transport cost to mar-
ket, the cost of enforcement rises with the urban distance.3 Net profits when facing en-
forcement are then pi(di) – F(di), the difference between two decreasing functions of the
distance to the nearest market (and agency) city.
1. PADDDtracker 2.1 (Conservation International and World Wildlife Fund 2021) shows
127 proposed and enacted PADDD events in total during 2016–21.

2. Deforestation could go beyond �di given speculative deforestation to capture future ex-
pected profits, including in land sales (Angelsen 2007; Miranda et al. 2019). Yet even if our
predicted clearing level could be off (e.g., is not truly zero beyond �di), speculative clearing can occur
anywhere, and thus we believe that our comments on gradients across space remain relevant. That
remains true for expectations of infrastructure development, if those are not strongly positively
correlated to distance. Other deviations from literal interpretations of our model exist, including
if frontier inhabitants are clearing for subsistence. Whether that scenario upsets the gradients
we discuss again depends on a strong positive correlation with market distance. Certainly we do
not wish to rule either of these out, even while laying out this big-picture framework we believe
is relevant.

3. This idea likely applies to the distance into a PA from its edge (Albers 2010)—which
yields predictions about pristine core areas, and effects of PA size, plus implications for optimal
enforcement. Here we are not focused on the within-PA pattern.
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This applies to the Brazilian Amazon, where the imposition of costs on those acting
illegally often takes the form of fines, or seizures (Assunção et al. 2017), while transport
costs do indeed hinder enforcement; for example, patrol costs are lower near hubs (Börner
et al. 2015). Consistent with that idea, illegal deforestation is higher when farther from
urban centers (Sims [2014]; Keles et al. [2020] for Brazilian Amazon), although en-
forcement using satellite detection could now focus where observed losses are high (Chen
et al. 2021).

We focus on illegal clearing in PAs and, thus, the fine F that applies for PAs and
the probability of clearing Prob(di) that applies within PAs (which for any given dis-
tance is probably higher than on private lands).We assume F is fixed across PAs, while
Prob(di) varies across PAs because they vary in urban distance, and define �dPAi as a dis-
tance at which the profits with enforcement pPA

i 5 p(p,Qi, di) – F × Prob(di) 5 0.
Development agents bargain to reduce PAs’ sizes to raise profit from forest clearing
(Tesfaw et al. 2018; Keles et al. 2020), since if part of any PA is erased then the fines
disappear for clearing that forest area.

Across the scenarios we consider in figure 3, we see that where PADDD occurs af-
fects its impact. As stated earlier, the erasure of a PA raises deforestation only where
that PA faced and blocked pressure. In each scenario, as noted just above, profits and
expected fines fall as the distance to the city increases. However, which of these two
functions falls faster with urban distance will vary across those scenarios. The other
thing that varies across scenarios is whether PA invasions are profitable very close to
Figure 3. Landscape locations and protected areas (erasure) impacts
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the city, which we believe could go either way. On the one hand, enforcement clearly is
easiest close to the city. On the other hand, clearly more people face the highest pos-
sible profits if they can extract near a market.

In figure 3, in the first and second With Protection rows, expected fines fall faster
with distance than profits, implying that profit with enforcement will be rising as we
move away from the city (although since the lowest chance of being caught is zero, the
maximum for this is just regular profit, which is zero at �di). In the first row, that trend
in the profits starts out with enforcement being effective near a city. Profit with en-
forcement is negative when the distance is zero. It could stay negative until �di, yet as
shown here may become positive for a range. PAs block clearing out to �dPAi ; thus size
reductions hurt closer to the city.

In contrast, in the second row, that same trend starts with the enforcement not
being effective near the city, that is, profit is positive in PAs. If so, rising profit with
enforcement only further raises clearing incentives, such that the PA never blocks
clearing. In that case, we do not expect PA size reductions to increase losses.

In figure 3’s third and fourthWith Protection rows, now profits fall faster with dis-
tance than expected fines, implying that profit with enforcement will be falling as we
move away from the city (unlike for above). In the third row, that trend in profit with
enforcement starts with enforcement being effective near a city. Profit with enforce-
ment is negative if distance is zero. If so, falling profit means the PA blocks clearing
out to where profit is zero (so PAs cannot have impact). Here, we expect PA size re-
ductions to raise loss. In the fourth row, that same trend starts with ineffective enforce-
ment (profits > 0 in PAs) near to the city. Then faster-falling profits costs can yield
an intermediate range with impacts, where PA reductions hurt.

2. EMPIRICAL APPROACH

2.1. Data

2.1.1. Units of Observation

We randomly drew 1,027,881 pixels4 from across the entire Brazilian Legal Amazon,
checking that the initial distribution of pixels in PAs and unprotected lands matched
land use (≃10% of land protected as of 2000). To address spatial autocorrelation, we
enforced a 1 km minimum distance between draws (Blackman 2013; Avelino et al.
2016; Velly and Dutilly 2016). We also dropped some observations, due to the pos-
sibility of local PA “leakage,” which affects land use nearby. Specifically, we exclude
4. Using pixels may not be best if the process leading to land-use change occurs at a larger
scale and if it has any spillovers in space, while grids may help to overcome these issues, as they
aggregate pixels within a defined polygon (Avelino et al. 2016). Naturally, any arbitrarily chosen
polygon size may also miss the true process scale, with inefficiencies (Blackman 2013; Avelino
et al. 2016). Yet pixels can allow more precise definitions of treated and controls groups (Le
Velly and Dutilly 2016).
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from the controls a 20 km buffer zone around each PA ( Joppa and Pfaff 2011;
Blackman 2013; Nolte et al. 2013), and we also have run robustness checks in which,
instead, we drop buffers around PAs of only 10 km.

2.1.2. Variables

We use forest loss at a 30 × 30 m resolution from Global Forest Change (Hansen
et al. 2013). These data indicate tree-cover density (10%–75%) in 2000, for trees over
5 meters in height, and whether a pixel was cleared each year from 2001 to 2015 (the
distribution of forest loss can be seen in fig. 4, juxtaposed with PAs and size reduc-
tions). We use the label “forest” if tree-cover density is at least 30%.5 Global Forest
Change data do not indicate a difference between natural and secondary planted forests
(Tropek et al. 2014; Sexton et al. 2016) and do not allow computation of net annual
forest-cover losses. Our deforestation outcome is a binary variable indicating whether
forest cover has been lost: in 2001–8, pre-size-reduction, or in 2010–15, per impacts
of size reductions (considering points forested in 2010). Forest cover is seen as lost
when the forest indicator falls to zero during the period in question.

To check robustness, we also use Tropical Moist Forest (TMF) data from the Eu-
ropean Commission’s Joint Research Centre (Vancutsem et al. 2021). Measured at the
same resolution as Global Forest Change, TMF data also depict a land-transition map,
with degradation and regrowth, trying not to include tree plantations. We start with
undisturbed forests, defined as a “closed evergreen or semievergreen forest without any
disturbance . . . with old secondary forests or forests that have been degraded in years before
the start of the Landsat archive” (Vancutsem et al. 2021, 1). Our binary outcome variable
equals one if any such pixel was deforested or degraded by the end of the period. Defores-
tation refers to “a change in land cover (from forest to nonforested land)” while degra-
dation refers to “a temporary disturbance in a forest remaining forested such as selective log-
ging, fires and unusual weather events (hurricanes, droughts, blowdown)” (JRC 2022).

We use PAs from the World Database on Protected Areas (WDPA) (IUCN and
UNEP-WCMC 2016), a spatially explicit database of PAs’ boundaries. We only use
PAs that could be recorded as reduced in size, the “units of conservation” in the Na-
tional System of Protected Areas (Sistema Nacional de Unidades Conservação [SNUC])
for Brazil. Thus, we dropped both Indigenous Lands and Quilombola Territories. Con-
servation units are classified by their IUCN categories defining the activities permitted
inside.6 If a location appears in multiple PAs’ boundaries, we assigned it to the strictest
classification among them.
5. Per the definition of tropical forest in the United Nations Framework Convention on Cli-
mate Change (“area of at least 0.5 ha with 10 to 30% tree cover density” [Chazdon et al. 2016])
as well as the CBD (Convention on Biological Diversity 2019).

6. Categories I to III are considered strictly managed, with human uses from strictly prohib-
ited to recreational purposes. Categories IV to VI are sustainable use, where people are a central
element or where sustainable use of resources is allowed.
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To study PADDD—specifically PA size reductions (downsizing and degazettement—
we utilize the PADDDtracker.org Data Release Version 1.1 (Conservation International
and World Wildlife Fund 2017), which provides spatially explicit data describing all
the reductions in PAs’ boundaries from 1970 to 2015.We study impacts of size reduc-
tions for pixels protected in 2008 (147,041 pixels), distinguishing which PAs were re-
duced in size during 2009–12, instead of remaining constantly protected through
2015, that is, the constant-sized PAs (see fig. 4). We find 3,369 of the former pixels
and 143,672 of the latter.

Conservation’s opportunity cost is affected by lands’ biophysical and socioeconomic
characteristics that affect agricultural suitability. We use slope and elevation from the
Shuttle Radar Topography Mission (SRTM) ( Jarvis et al. 2008), 1995–2015 rainfall
levels from version 2.0 of Climate Hazard Group InfraRed Precipitation with Station
Data (CHIRPS) andWorldClim (Funk et al. 2015) and an indicator for whether soil
from Global Agro-Ecological Zones (FAO and IIASA 2020) is suitable for high-input
rain-fed farming.

Rents also depend on market access. We use roads as a proxy: in 1996, from the
Center for International Earth Science Information Network (CIESIN 2015) and,
in 2006, from the Brazilian Departamento Nacional de Infraestrutura de Transportes
Figure 4. Protected areas (PAs), PA size reductions, and deforestation in the Brazilian Ama-
zon. Source: author (using Hansen et al. 2013; IUCN and UNEP-WCMC 2016; Conservation
International and WWF 2017).

http://PADDDtracker.org
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(DNIT 2017). We also use the network of navigable rivers as well as “major cities,” both
from the Environmental Systems Research Institute (IBGE 2017; ESRI 2019).7 As
supplementary indicators of overall economic pressure, we use 2001–12 agricultural fires
from the Socioeconomic Data and Application Center (SEDAC) (van der Werf et al.
2017) as well as 2000–13 nighttime lights from the National Centers for Environmen-
tal Information (Baugh et al. 2010).

2.2. Methods

2.2.1. States as Contexts

Wepresume that the three states in which PAs were reduced in size represent different
contexts. Working within a state holds fixed many variables—some hard to observe—
while the states differed in average deforestation pressures. As in section 3.2, Roraima
has low pressure and size reductions in 2009; Pará has more pressure, with reductions
in 2012; and Rondônia has higher pressure, with 2010 reductions.

2.2.2. Two-Way Fixed Effects

For each context, we run two-way fixed-effects panels (TWFE) differences-in-differences,
of the form:

Yit 5 β0 1 β1PADDDi 1 ai 1 λt 1 vXit 1 εit, (1)

where Yit represents whether a pixel i is deforested at year t, while PADDDi equals 1
when a PA has been reduced in size and 0 otherwise, noting that our untreated units
are PAs that remained constant in size. We also include pixel fixed effects ai and year
fixed effects λt that account, respectively, for fixed unobservable differences between
treated and untreated units and common shocks that could influence our outcome.
The term Xit is a vector of time-varying control variables, while εit is the error term of
the model.

2.2.3. New DID Estimators

TWFE identifies treatments’ effects if the assumption of “parallel trends” holds, that
is, the evolutions of treated and untreated units’ mean outcomes would be the same
without treatment (below we present our effort to use matching to raise the chance
this holds for subsets). Recent literature shows that another key assumption is a ho-
mogeneous effect of the treatment for all units and over time (de Chaisemartin and
D’Haultfœuille 2020). As previewed above, that assumption is unlikely to hold across
our contexts.
7. We use driving factors regularly found as significant in literatures on tropical deforesta-
tion (distance, slopes, soil quality). These covariates are significant here in a ordinary least squares
regression where deforestation is the dependent variable.
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Standard TWFE estimators can helpfully be viewed as weighted sums of individ-
ual treatment effects for each unit-year cell (de Chaisemartin and D’Haultfœuille
2020), revealing that TWFE estimators can be biased if treatment effects are hetero-
geneous. Some underlying effects can then receive negative weight (de Chaisemartin
and D’Haultfoeuille 2020; Callaway and Sant’Anna 2021; Sun and Abraham 2021).
Our main results thereby make use of de Chaisemartin and D’Haultfoeuille’s (2022,
2020) DID estimator (DIDL), which is robust to heterogeneous treatment effects. Our
standard errors are estimated using a bootstrap with 100 replications. We also present
parallel-trends tests from FEct (in R, Liu et al. 2022).8

2.2.4. Prepanel Matching (Effectively Identifying Subcontexts)

TWFE’s main identification assumption is parallel trends, that is, that the deforesta-
tion trends in the size-reduced and constant-sized PAs would have been the same had
there not been any PA size reductions. Site selection for size reduction due to bargain-
ing can make this unlikely or at least challenging to assert. Selection could be across
state, of course, if environment or development interests prefer some contexts. Within
any state, significant selection implies that settings for the size-reduced PAs differ,
meaningfully, from other settings in that state. This, in turn, suggests that at least some
constant PAs are not good controls.

Fortunately, while our matching is not always successful (as is documented below
regarding selection), efforts to match treated and untreated PAs within each state often
find subgroups of the constant-sized PAs for which prereduction trends are parallel
to prereduction loss in size-reduced PAs (for average treatment effects on the treated
[ATTs] and vice versa for average treatment effects on the untreated [ATUs]).We use
propensity-score matching, defining “similarity” as treatment probabilities from probit
models for the size reductions (Caliendo and Kopeinig 2008; Ferraro and Hanauer
2014; Velly and Dutilly 2016). To raise observations for postmatching inferences,
we could match a treated observation to multiple untreated observations—raising dis-
similarity and bias. We employ the nearest neighboring pixels, without replacement,
using a caliper of 0.5 standard deviations of the estimated propensity scores.9 Thus,
we exploit pretreatment years. Beyond visually inspecting pretreatment dynamics, we
use de Chaisemartin and D’Haultfoeuille and the FEct R package (Liu et al. 2022)
8. It is worth noting that the de Chaisemartin and D’Haultfoeuille’s DIDL estimator also
(and perhaps uniquely to date) applies also to “unstaggered” designs, in which the treatment
not only “switches on,” i.e., starts, but also then can “switch off ” again. Further, de Chaisemartin
and D’Haultfoeuille (2022) showed that when such TWFE regressions include multiple treat-
ments, the TWFE estimators for each of those treatments can be biased by the effects of all the
other treatments.

9. Given a small sample in Roraima, we use 3-1 matching (again with replacement and cal-
iper of 0.5 standard deviations).
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for pretreatment placebo tests. We estimate TWFE and DIDL for the groups that pass
parallel-trends tests, with an indication of (negative) weights on each treatment effect
(de Chaisemartin and D’Haultfœuille 2020).

Concerning the similarity achieved, we examine standardized mean differences,
tests of distributions, and remaining standardized biases. Gains from matching depend
upon these differences being reduced (Ferraro and Hanauer 2014; Velly and Dutilly
2016). Hidden biases may remain if confounding variables are unobserved. Given this
possibility, our standard errors use the variance approximation developed by Abadie
and Imbens (2006). We also follow Rosenbaum (2002) to check how sensitive are
propensity-score-matching results to potential biases. This “bounding” test reveals what
value of such unobserved confounders would, itself, raise the odds of protection and
deforestation by a factor of t. If the average treatment effects are still significant for
a large t increase, it indicates some insensitivity to such biases.

3. RESULTS

3.1. Overall Descriptive Statistics

Among all locations protected in 2000, ~ 98% of pixels were within PAs that remained
constant in size, until at least 2015, while ~ 2% were in those PAs selected to be re-
duced in size between 2009 and 2012. The three states we examine represent 95%
of all PA size reductions and 39% of constant-sized PAs. Most reductions (65%) are
in Rondônia, while 17.8% and 12.5% are, respectively, in Pará and Roraima. Inside
constant-sized PAs, on average, during 2001–8 only 0.9% of tree cover was lost (0.2%
lost in Roraima, 0.6% in Rondônia, 1.7% in Pará). Except in Roraima, tree-cover losses
during 2001–8 were far higher, on average, in the PAs selected to be reduced: 22.1%
in Rondônia and 2.2% in Pará.

Forest-loss rates in the PAs selected for size reduction were above those in unpro-
tected forest (table 1B in the supplementary materials; supplementary materials are avail-
able online). As to how deforestation rates differ so much for these PA subsets: constant
PAs are, on average, farther from roads than unprotected forest (table 1B in the supple-
mentary materials), while the opposite is true of size-reduced PAs (p-values at 1%). Thus,
size-reduced PAs faced more pressures than constant PAs, and sometimes unprotected
forests, given selection (Pack et al. 2016; Tesfaw et al. 2018; Keles et al. 2020).

3.2. Distinguishing Settings: Distinct Time Paths,

with Spatiotemporal Matching

3.2.1. Low Pressure Nonimpacts of Reductions: Not Requiring Selection within Context

Figure 5A, for Roraima, supports our conjecture that low pressure limits impacts of
PAs and, in turn, also limits the potential for a rise in forest loss due to PA size reduc-
tions.With low pressure, PAs that remained constant and to-be-reduced PAs suffered
few 2001–8 losses. Selection for PA reductions thereby had little scope for impacts:
pressures are low; thus reductions could do little short-run damage.
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Confirming visual inspection (it is hard to see dotted lines for matched subsets asmul-
tiple lines overlap), placebo testing within the FEct R package (Liu et al. 2022) in fig-
ure 6A supports parallel trends. The F and equivalences test show that size-reduced
PAs had the same deforestation trend as the best matched constant-sized PAs (supple-
mentary materials table 2A for covariate balance before and after matching).

3.2.2. Medium Pressure: Nonimpact of PA Reductions Depends on the Selection for Reductions

Figure 5B, for Pará, shows that selection for size reductions affects their impacts.
As seen in the rate of deforestation for unprotected forest (solid black line), pressure
is higher than in Roraima. That provides potential for PA impacts and on average
constant-sized PAs (solid light gray line) blocked most 2001–12 forest losses. Se-
lection for size reductions is clear because the size-reduced PAs (solid medium gray
line) did worse. Yet matching constant-sized PAs to the size-reduced PAs could allow
for parallel trends and a defensible estimate of ATT. In figure 5B we see that matched
constant-sized PAs (dotted light gray line) are more similar to the size-reduced PAs
(solid medium gray line). Figure 6B confirms that postmatching, these PA subsets
Figure 5. Deforestation trends. A, Roraima: low pressure limits impacts of protected areas
(PAs) and size reductions. B, Pará: medium pressure and some enforcement, impacts depend on
selection. C, Rondônia: higher pressure, considerable selection for state PA size reductions.
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trend similarly enough to estimate ATT (table 2B in supplementary materials for covar-
iate balances). However, where we most expect to find impacts of size reductions would
be within the ATU, as these constant-sized PAs performed well. If any size-reduced PAs
performed similarly, the matched subset of sized-reduced PAs would have faced and
blocked pressure, the recipe for impact. Yet figure 5B reveals that the matched size-
reduced (dotted gray line) did not perform like the constant PAs (light gray line).

3.2.3. High Pressure: Again Nonimpact for Reductions Depends on the Selection for Reductions

Figure 5C, for Rondônia, again shows that selection for size reductions affects the im-
pacts of reductions. As clear from the deforestation for unprotected forest (solid black
Figure 6. Parallel trends test (FEct). A, Roraima average treatment effect on the untreated
(ATU). F: tests if average (observed – predicted) outcome before treatment equals 0. Equivalence
tests the same versus a prespecified difference (Liu et al. 2022). B, Pará average treatment effect on
the treated (ATT). F: tests if average (observed – predicted) outcome before treatment equals 0
Equivalence: tests the same versus a prespecified difference (Liu et al. 2022). C, Rondônia ATU
F: tests if average (observed – predicted) outcome before treatment equals 0. Equivalence: tests
the same versus a prespecified difference (Liu et al. 2022).
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line), pressures are higher than above. Impressively, constant-sized PAs still show little
loss (solid light gray line). In great contrast, state-managed size-reduced PAs (solid me-
dium gray line) seem effectively unenforced: forest loss is equal, or above, unprotected.
That parallel movement of unprotected and sized-reduced PAs continues after 2010
PA size reductions, while even the best-matched constant PAs (dotted light gray line)
performed far better than reduced PAs, undermining ATT (yet post-2007 trends are
more parallel) (see table 2C in supplementary material for covariate balances). None-
theless, we feel that the solid medium gray line tracking the solid black line supports the
“unblocked pressure” case for no impact. Again, with well-functioning constant PAs,
ATU could find some PADDD impacts: “imperfect environmental selection” (or “de-
velopment selection”), in which size-reduced PAs did well before being reduced, makes
PAs candidates for impacts. Figure 5B shows that the matched subset of reduced PAs
Figure 7. Trends tests and estimates. A, Roraima average treatment effect on the untreated
(ATU) (de Chaisemartin and D’Haultfœuille 2020). Average effect: –.000 (SE: .000); p-value
of the joint test that all the placebos are equal to 0: 0.38. B, Pará average treatment effect on the
treated (ATT) (de Chaisemartin and D’Haultfœuille 2020). Average effect: –0.002 (SE
0.003); p-value of the joint test that all the placebos are equal to 0: 0.16. C, Rondônia ATU
(de Chaisemartin and D’Haultfœuille 2020). Average effect: .007 (SE: 0.006***); p-value o
the joint test that all the placebos are equal to 0: 0.00.
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(dotted gray line) is far closer to constant PAs (solid light gray line). Figure 6C con-
firms parallel trends.

3.3. Panel Regressions Using Matched Subsets for Forest Impacts

of Selective PA Erasures

3.3.1. Low Pressure Nonimpacts of Reductions: Not Requiring Selection within Context

Figure 7A shows the results of the DIDL estimator for both pretreatment and post-
treatment periods, that is, another test of parallel trends (to go with fig. 6A from FEct)
plus estimates of PADDD impacts. With at least five pre-PADDD periods of no sig-
nificant differences, de Chaisemartin and D’Haultfoeuille (2020) would have us con-
sider only five periods posttreatment, all of which show no significant effect.

Table 1 shows TWFE panel regressions for Roraima (from fig. 6A). The regression
for 2000–2015, in its only column, reveals no significant impact from PA size reduc-
tions in comparing matched subsets. For this case, it is hardly surprising that any of the
sets of legitimate comparisons find no PADDD impact.

3.3.2. Medium Pressure: Nonimpact of PA Reductions Depends on the Selection for Reductions

Figure 7B conveys that with some pressure, resulting in some loss of forest within the
PAs selected for size reductions, it was not as easy to very closely match the treated PA
with a subset of the constant PAs. However, matching on both fixed characteristics and
pretreatment deforestation levels (see fig. 5B) manages to find similar enough PAs that
Table 1. Roraima ATU (TWFE)

2000–2015

PA size reductions –.000
(.001)

Year –.000
(.000)

Agricultural fires –.000
(.000)

Average temperatures .000
(.000)

Average rainfalls .000
(.000)

Constant .038
(.044)

R2 .09
N 51,205
Note. Due to the low number of observations, it is not possible to estimate the co-
efficient during 2007–15. ATU 5 average treatment effect on the untreated; TWFE 5
two-way fixed effects; PA 5 protected area.
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parallel trends hold again. Relative to those strongly matched constant PAs, looking
out three periods there does not appear to be a significant impact from size reduction.

Table 2 shows TWFE panel regressions for Pará (from fig. 6B). The regression for
2000–2015, in its initial column, reveals no significant impact from PA size reduc-
tions, comparing the matched subsets (recalling that for this case, with some pressure,
ATU might have had impacts yet that the match was poor).

3.3.3. High Pressure: Again Nonimpact for Reductions Depends on the Selection for Reductions

Figure 7C shows theDIDL results for pre- (to go with fig. 6C from FEct) and posttreat-
ment periods. With at least five pre-PADDD periods of no significant differences, de
Chaisemartin and D’Haultfoeuille (2020) would have us consider only five periods
posttreatment—which, in this case, show forest impacts. Given that here the PAs se-
lected for size reduction were those that performed like the constant PAs that in turn
performed quite well, finding a rise in deforestation due to PADDD is exactly what is
predicted.

Table 3 shows TWFE panel regressions for Rondônia ATU, the matching for
which parallel trends held (see fig. 5C), that is, size-reduced PAs that performed well
prereduction, as did the constant-sized PAs. The TWFE regression for 2007–15 out-
comes in studying state PA size reductions, in its second column, shows an average
Table 2. Pará ATT (TWFE)

2000–2015 2007–15

PA size reductions .002 –.001
(.003) (.004)

Year –.000 .000
(.000) (.001)

Agricultural fires .000 .000
(.000) (.000)

Average temperatures .001 –.003
(.002) (.003)

Average night lights –.000 –.000
(.002) (.002)

Average rainfalls .000 .000
(.000) (.000)

Constant .970 –..944
(.664) (1.977)

R2 .09 .25
N 7,898 2,872
Note. ATT 5 average treatment effect on the treated; TWFE 5 two-way fixed
effects; PA 5 protected area.
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annual loss of 0.008%. That is also true, if smaller in magnitude, when using all events
in Rondônia for 2000–2015. This result is robust to a 10 km buffer (section 3C in the
supplementary materials).

4. DISCUSSION

Global commitments by the Brazilian government on biodiversity and the reduction of
GhG emissions already were somewhat difficult to reach (Campos-Silva et al. 2015;
Gallo and Albrecht 2019; Visconti et al. 2019) despite past PA investments that, on
average, had reduced deforestation (Amin et al. 2019). Achieving them seems far less
likely given recent policy, including implicit and explicit permissions for economic ac-
tivity to impinge on PAs. That includes PADDD (downgrading, downsizing, degazette-
ment of PAs) (Naughton-Treves and Holland 2019; Qin et al. 2019). Few have studied
PADDD, in particular controlling for where PAs were selected to be reduced in size—
which affects those reductions’ impacts.

In evaluating impacts of 2009–12 PA size reductions in the Brazilian Amazon upon
post-erasure 2010–15 forest loss, we go beyond Pack et al. (2016) and Tesfaw et al.
(2018). We extend understanding of erasures’ impacts by looking further over time
and considering heterogeneity in impacts across space. We consider contexts that di-
verge from “canonical” contexts for PADDD to lead to short-run forest loss. Concep-
tually we lay out which size reductions should increase forest loss by more or by less,
Table 3. Rondônia, State Events, ATU (TWFE)

2000–2015 2007–15

PA size reductions .005 .008
(.001)*** (.002)***

Year .000 .000
(.000) (.000)**

Agricultural fires .000 –.000
(.009) (.000)**

Average temperatures –.000 –.003
(.000) (.01)**

Average night lights –.003 –.012
(.002) (.004)***

Average rainfalls –.000 –.000
(.000) (.000)

Constant –.057 –1.386
(.1441) (.593)**

R2 .09 .25
N 42,962 15,628
Note. ATU 5 average treatment effect on the untreated; TWFE5 two-way fixed effects;
PA 5 protected area.
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noting that only for those PAs that had previously lowered deforestation should we
expect impacts from erasures.

Empirically, we evaluate impacts of PA size reductions upon rates of tree-cover loss,
for specific contexts. We documented that the relevant selection dynamics led to the
2009–12 PA size reductions within the Brazilian Amazon occurring within three con-
texts implying (little or) no impact fromPA size reductions, at least in the short run. First,
for low pressure outside of the “arc of deforestation,” there is little loss of tree cover and,
thus, no impacts. This requires no selection within this context—only selections into it.

Second, for medium pressure, if the PAs selected for size reductions are those that
blocked pressure considerably less than PAs allowed to remain constant in size, there is
much less room for impacts on the forest from erasing PAs. “Environmental selection”
of the worst-performing PAs limits the damage. In this case, that is the situation for
which we can best find good matches and we again find no impact.

Third, for high pressure, selection of the PAs which effectively fail to block that
pressure can effectively guarantee that erasure of those PAs cannot do much damage.
To first order, the worst that could happen should be that the PAs continue to be un-
enforced, with deforestation rates like the unprotected forests. We see this case, again
implying no impact. However, for this case, “development selection” of some PAs for
reductions which had been performing well before reduction could well lead to impacts
of erasures. That is precisely the situation for which we could find some good matches,
to show that forest was lost.

While we extend prior studies (Pack et al. 2016; Tesfaw et al. 2018), our results
are relatively short term. Over time, size reductions and more generally PADDD can
unleash distinct socioeconomic dynamics. Our results also do not consider spatial
spillovers from PA erasures that can extend beyond PAs’ borders (Herrera et al.
2019). Prodevelopment signals could foster land-clearing behaviors, even within
PAs, and could be investigated by looking at how PADDD events affect land prices
(Miranda et al. 2019).

Depending on their causes (rural settlement, extraction, or infrastructure like roads),
PADDDmay have longer-run, spatially broader impacts on economic activities (Tesfaw
et al. 2018). Further research will be needed to examine such reversal of proforest sig-
naling achieved by protection (Herrera 2015). Even in low-pressure areas, PAs could
act as a barrier to future development pressure, which PADDD would threaten. Eval-
uating that impact would require different approaches from those employed here.

We note that, since 2015, further PA size reductions have been proposed and en-
acted, consistent with a relaxation of environmental policies in the Amazon since 2012
(Rochedo et al. 2018; Carvalho et al. 2019; Ferrante and Fearnside 2019). Thus, calls
to extend the PA network and to effectively manage the PAs to limit environmental
degradation now seem less likely to be answered (Golden Kroner et al. 2019). If the
scale of PA size reductions keeps rising, limiting those to contexts with low damage
could get harder.



Selective Erasure and Deforestation in the Brazilian Amazon Keles, Pfaff, and Mascia 1143
Understanding risks and impacts of PA size reductions informs PA siting, enforce-
ment, management, and advocacy—including efforts to guide size reductions to lower
damages. These points hold globally, noting that PADDD and other regulatory roll-
backs are arising broadly of late, in part with some connections to economic pressures
from many shutdowns due to the pandemic (Conservation International 2020). Should
our conceptual framework and empirical results be a guide, from the development side
PA size reductions are likely to be proposed near forest pressure (Symes et al. 2016;
Tesfaw et al. 2018; Golden Kroner et al. 2019; Qin et al. 2019; Keles et al. 2020). For
conservation, enforcement in such sites has big gains.
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