
Title: Scaling up conservation impact in Madagascar 1 

Authors:  Theo Gimenez1*, Alexander Pfaff2*, Ranaivo Rasolofoson3,4 and Lucas Joppa5** 2 

* Co-lead authors 3 

**Corresponding Author: lujoppa@microsoft.com 4 

Affiliations: 5 

1Abt Associates, Cambridge, MA, USA  6 

2Duke University, Sanford School of Public Policy, Durham, NC  7 

3Food and Resource Economics, University of Copenhagen, Denmark  8 

4School of Environment, Natural Resources and Geography, Bangor University, United 9 

Kingdom  10 

5Microsoft Research, 14820 NE 36th Street, Redmond, WA, USA 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 



 1

Abstract:  Ten years ago, Madagascar’s government committed to drastically scale up the 26 

nation's protected-area coverage from ~3% to 10% of its area. We ask how successful this 27 

PA expansion is likely to be in terms of reducing deforestation (and, thereby, increasing the 28 

conservation of biodiversity). We statistically evaluate the impact of the prior generations of 29 

Malagasy PAs and use those results to anticipate the conservation impacts of Madagascar’s 30 

newest PAs. We find that deforestation was reduced by the prior PAs, although by less than 31 

suggested in simpler comparisons that lack explicit controls for land characteristics. Further, 32 

impacts are higher where deforestation pressure is higher, which often is closer to roads and 33 

cities (and which also may imply higher costs). We find Madagascar’s newest PAs are sited 34 

where, if managed correctly, they can achieve impacts at least as high as prior conservation. 35 

 36 
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1. Introduction  50 

Held every ten years, the International Union for Conservation of Nature’s (IUCN) World Parks 51 

Congress (WPC) is the global forum on protected areas (PAs). It sets the international agenda for 52 

site-based protection for the decade to follow. At the WPC in 2003, in Durban, South Africa, the 53 

then-president of Madagascar stunned the conservation community by embracing protection. In 54 

what became known as the “Durban Vision”, former President Ravalomanana vowed to triple the 55 

area protected in Madagascar before the next WPC (i.e., to go from ~3% to ~10% of the nation). 56 

With this announcement came the creation of the new Malagasy PA network, i.e., the System of 57 

Protected Areas of Madagascar (Système d’Aires Protégées de Madagascar (SAPM)), consisting 58 

of the pre-existing PAs as well as all of the newly created PAs (Allnutt et al., 2009;  Raik, 2007). 59 

While small in total land area, the Durban Vision was globally important. Madagascar hosts one 60 

of the most biologically diverse ecosystems in the world, with a variety of endemic taxonomic 61 

groups. However, despite global agreement and local efforts to conserve the region in light of 62 

this biological treasure − a global public good − there have been high rates of deforestation over 63 

time throughout the country (Harper et al., 2007;  Kremen et al., 2008;  Mittermeier et al., 1990;  64 

Scales, 2012). Such land-use changes may threaten species but they have local economic benefit. 65 

President Ravalomanana’s 2003 decision to counter these threats by greatly increasing the area 66 

protected was surprising in its scale but not in its purpose. For almost a century, Madagascar has 67 

created protected areas (PAs) as part of achieving a balance between local need and protection of 68 

biodiversity.1 Its PA network grew steadily, since its first PA was established, in 1927. Yet forest 69 

                                                 
1 The history of Malagasy forest conservation policy is beyond our scope. Longer accounts are provided by Toillier 
et al. (2011),  Consiglio et al. (2006), Miller and Porter Morgan (2011),  Harper et al. (2007), and Raik (2007). 
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area declined − due to corruption, ineffective monitoring and subsistence use of forest resources 70 

by low-income rural communities (Ganzhorn et al., 1997;  Raik, 2007). The management of PAs 71 

remained largely unchanged until the collapse of the Soviet Union in the 1980s, at which point 72 

Madagascar shifted towards a more democratic style of government and foreign aid increased in 73 

an attempt to stimulate both development and conservation (Raik, 2007).  In 1989, Madagascar 74 

ratified Africa’s first National Environmental Action Plan, creating the Association National 75 

pour la Gestion des Aires Protégées (ANGAP) to manage its PA portfolio (Allnutt et al., 2009). 76 

Yet achieving conservation impact requires more than simply designating lands for conservation. 77 

There must be 'additionality' to the actions – for example, observed deforestation post-protection 78 

must be lower than deforestation would have been, at the same sites, in the absence of protection. 79 

Measuring ‘in the absence’ can be difficult. However, many observable land characteristics aside 80 

from protection – such as distances to roads, soil quality, management practices, or slopes – are 81 

relevant to and help to indicate deforestation outcomes in any scenario. Such measurable features 82 

can help to document that local development forces push back against PAs − a local constraint − 83 

for instance by pushing PAs away from where agricultural or other profitability would be high. 84 

Consequently, PA sites tend to be different from unprotected sites (Andam et al. 2008 in Costa 85 

Rica, Pfaff et al. 2014 in Brazil, and Joppa and Pfaff 2009 globally) and, by controlling for this, 86 

often we are able to get closer to understanding the true conservation impacts of PA legislation. 87 

The most recent WPC in Sydney this year signaled the end of former President Ravalomanana’s 88 

commitment. A retrospective analysis of Madagascar PA impacts can help to shed light on the 89 

future impact of the new Durban Vision PAs. We ask: did Malagasy PAs overall generally deter 90 

deforestation – i.e., one of the biggest threats to biodiversity − and, if so, do the locations of the 91 
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PAs appear to affect such deterrent impacts? Finally, if so, do these newest Durban Vision PAs 92 

appear to be located where PAs are likely to have lasting impact? We use matching to estimate 93 

PA impacts on deforestation in Madagascar − to our knowledge the first assessment of Malagasy 94 

PAs with controls for location (although see Gorenflo et al. 2013) and including the first use of 95 

matching in such evaluation (though Rosolofoson et al. 2015 provide an assessment of effects of 96 

community forest management with a similar approach, implemented simultaneous to this work). 97 

We assessed the impacts of PAs created before the Durban Vision, including the influence of key 98 

land characteristics on the magnitude of those impacts, and then documented Durban Vision PAs 99 

in terms of those characteristics. Specifically, to call attention to PAs' landscape characteristics, 100 

we analyzed not only all PAs but also subsets to assess if some resulted in higher PA impacts. 101 

We find that PAs created prior to the Durban Vision significantly reduced deforestation, while 102 

the Durban Vision PAs were on sites that − if well managed − would yield impacts at least as 103 

high as earlier PAs. Consistent with other countries (see Pfaff et al. 2009, Joppa and Pfaff 2010), 104 

impacts in Madagascar can be higher when closer to roads and cities. These findings contribute 105 

to global conversations surrounding expansion of PA networks at multiple scales, as the world’s 106 

governments strive to achieve the Convention on Biological Diversity’s 11th "Aichi Target", i.e., 107 

that at least 17% of terrestrial and 10% of coastal and marine areas are effectively conserved. 108 

Below, Sections 2-5, respectively, present our Methods, Data, Results and finally Discussion. 109 

2. Methods 110 

Were PAs randomly sited it would suffice to compare deforestation rates inside and outside PAs 111 

to calculate PA impact. The protected and unprotected parcels would have similar characteristics 112 

and thus the deforestation on unprotected lands would provide a good estimate of what would 113 
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have occurred at the PAs' locations had they not been protected. Many analyses compare PAs to 114 

all unprotected land or to the land nearby (Joppa and Pfaff 2010a provides a review), instead of 115 

controlling statistically for relevant location characteristics. When PAs differ in characteristics 116 

from unprotected lands − often facing lower pressure for deforestation (Joppa and Pfaff 2009) − 117 

this can lead to overestimates of the PAs' impacts. Here we address potential bias using ordinary 118 

least squares regression (OLS) to understand the drivers of deforestation, and then statistically 119 

controlling for biases in those drivers through OLS regression and propensity-score matching. 120 

Ordinary Least Square Regression 121 

Before getting to the matching analyses, and indeed motivating those analyses, we employ three 122 

types of OLS regressions for two types of outcomes, those being where protection is located and 123 

where deforestation occurs. We analyze the latter twice, starting with an analysis of unprotected 124 

lands in order to see what site characteristics have significant influence upon deforestation rates. 125 

We consider biophysical characteristics such as elevation, slope and distances to water, as well 126 

as socioeconomic characteristics like distances to roads, villages and large population centers, in 127 

addition to using indicators for large political units that differ in their geographies and processes. 128 

Having confirmed the significance of those characteristics, we examine their effects on locations 129 

of protection in a regression for whether land has been designated as protected. As this confirms 130 

that protection is not randomly dispersed across the landscape, within a deforestation regression 131 

to test for the impact of protection we will include controls for influences of land characteristics. 132 

Thus, our third OLS regression is again for deforestation but considers all locations, i.e., not just 133 

unprotected locations, since we want to compare the unprotected and protected locations to infer 134 

the impacts of the PAs. We explain where deforestation occurs, including with a PA indicator.  135 
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Matching Methods 136 

The last OLS regression considering deforestation for all locations offers one form of control for 137 

site characteristics when testing the impact of PAs. We control further using matching. When it 138 

is effective, matching generates control groups with characteristics very similar to treated sites. 139 

That reduces the challenge of removing characteristics' influences to infer PA impact. If treated 140 

and control groups have rather different characteristics, OLS may not strip out all the influences.  141 

Matching focuses very explicitly on apples-to-apples comparisons, i.e., on similar characteristics. 142 

Of course it can employ only observable land characteristics, i.e., assumes that conditional on X 143 

(observable characteristics like slope), selection to treatment (here protection) is independent of 144 

potential outcomes (Rosenbaum and Rubin, 1983;  Sekhon, 2009). If protected and unprotected 145 

are matched on observable covariates, they are assumed to differ only in terms of the protection.   146 

For multiple continuous covariates, matching summarizes the characteristics using the predicted 147 

probability of a site being treated, i.e., protected (Rosenbaum and Rubin 1983). We match using 148 

that predicted probability or 'propensity score', in the sense of propensity for such characteristics 149 

to lead to protection. We match treated points with the untreated points with most similar scores. 150 

We also did robustness checks using calipers, i.e., rules for how similar those most similar scores 151 

have to be for that treated (i.e., protected) point to be included in the analysis (we used 0.01, 0.10 152 

and 0.50 as maximum propensity-score differences).  For each model, we also show whether and 153 

by how much the covariate balance improved, due to matching. We also address bias using post-154 

match regressions to account for remaining differences in the X covariates between the matched 155 

pairs (Abadie and Imbens 2002;  Rubin 1973;  Sekhon 2011). Data analysis was performed with 156 

R 2.13.1 (R Development Core Team, 2011) including the Matching Package (Sekhon 2011).   157 
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3. Data 158 

3.1 Land Cover 159 

The land-cover data for 1990, 2000, and 2005 that we make use of were originally produced by 160 

Conservation International (CI) using Thematic Mapper (TM) and Landsat Enhanced Thematic 161 

Mapper Plus (EMT+) data.  CI compiled the three raster images into one multi-date image with a 162 

28.5m resolution (Harper et al., 2007;  Kremen et al., 2008).  The land-cover data used for this 163 

analysis was identical to the CI data, aside from minor preprocessing by Kremen et al. (2008), 164 

noting that pixels that were obstructed by clouds during imaging for one or more of the three 165 

study dates were excluded from analysis. The numbers of forested pixels that could be utilized, 166 

by year, are 124,252,074 for 1990, for 2000 114,507,467 and 111,536,234 for 2005. From these, 167 

we drew a random sample of 100,000 pixels for each of our two time periods of deforestation. 168 

3.2 Protected Areas 169 

The data we examine are a subset of the GIS file used by Kremen et al. (2008). We split PAs into 170 

three groups by year of creation: pre-1990; 1990-1999; and 2000-2008. We refer to the latter as 171 

‘Durban Vision PAs’. Lacking deforestation data for after they were created, we infer potential 172 

impact by comparing locations to PAs created prior to 2000, for which we do analyzed impacts. 173 

While PAs have different IUCN (International Union for Conservation of Nature) designations, 174 

the designations were not part of the dataset and, therefore, were not considered in this analysis. 175 

Some locations had missing data due to being outside of the raster grid’s spatial domain. This is 176 

because raster data is formed with pixels while vector data consists of points, lines and polygons.  177 

The effect of these errors was minimal and the observations were removed.  Table 1 shows some 178 

basic statistics on PA extent, for the endpoints of our periods, and its overlap with forested areas. 179 
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3.3 Key Landscape Characteristics 180 

Elevation data are from the NASA Shuttle Radar Topographic Mission (SRTM) and have 90m 181 

resolution. We derived slope (degrees from horizontal) from the Digital Elevation Model (DEM).  182 

Data for streams and other inland water bodies (i.e., rivers, canals, and lakes) came from a 1992 183 

publication of the Digital Chart of the World (DCW) and Urban Area was from the 1997 DCW. 184 

All DCW data has a scale of 1:1,000,000 and we note that these variables are constant over time. 185 

Also constant are ecoregions, classified by the World Wildlife Fund and accessed by means of an 186 

updated version of Olson et al. (2001) that was published in 2004. Madagascar Vegetation Map, 187 

which provides the Forest Classification data, had been produced for the Madagascar Vegetation 188 

Mapping Project (http://www.vegmad.org). The data were actually published in 2007, although 189 

the timeframe of the grid is 2001 (this is not a worry as the ecoregions do not shift on timescales 190 

relevant to this analysis). Here the data resolution is 30m (2007). Administrative Boundaries are 191 

from the global administrative area database (GADM, Version 1).  Their scale is unknown and it 192 

could vary by country but, at roughly 30 Arc seconds, it is sufficiently precise for our purposes.  193 

The six original provinces in Madagascar (Antsiranana, Antananarivo, Mahajanga, Toamasina, 194 

Fianarantsoa and Toliara) were used as controls for regional differences, because our time frame 195 

predates their 2004 dissolution (was alongside the establishment of other administrative regions). 196 

Villages and road-network data are from The National Geographic & Hydrographic Institute of 197 

Madagascar (www.ftm.mg), originally for 1964 and updated in 1990). These data are 1:500,000. 198 

The ‘Path Distance’ tool was used to process these data in order to derive distances to Primary 199 

and Secondary Roads.  Population density comes from the 2000 Global Gridded Population 200 

Database of the Center for International Earth Science Information Network (CIESIN).  201 
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4. Results 202 

Protected Area Locations and Deforestation 203 

In Table 2 we provide a naïve estimate of the impact of PAs on deforestation by showing rates of 204 

deforestation for protected and unprotected locations, for PAs established prior to the year 2000. 205 

For the higher 1990-2000 deforestation rates, comparing deforestation in PAs to deforestation in 206 

all of the unprotected sites suggests a 7% reduction in deforestation due to those pre-1990 PAs. 207 

The 2000-2005 deforestation rate is lower. Comparing the deforestation rates in the PAs to all of 208 

the unprotected lands suggests about a 2% reduction in deforestation due to pre-1990 PAs. With 209 

slightly lower internal clearing, the PAs created in 1990-1999 had a greater impact (over 2.5%). 210 

We call such estimates of PA impact 'naïve' because they ignore the differences in characteristics 211 

shown in Table 2 between the protected lands and unprotected lands on average in Madagascar. 212 

For instance, the protected sites are further from roads and on average also are on steeper slopes. 213 

That is consistent with results from Green et al. 1990 and Sussman et al. 1994, for Madagascar, 214 

and Joppa & Pfaff 2009 globally. Table 3a's multivariate regression summarizes the differences 215 

in sites by showing the effect of all our landscape characteristics on the probability of protection. 216 

Drivers of Deforestation 217 

The differences just documented, across protected and unprotected sites, matter for the rate of 218 

deforestation. Table 3b's OLS regression for deforestation for only unprotected locations shows 219 

this holds independent of any PA impacts. This shows important drivers of both 1990-2000 and 220 

2000-2005 deforestation pressures. By implication, pressures varies greatly across the landscape 221 

(per time periods, coefficients tend to be smaller in later period given less deforestation overall). 222 
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For example, roads cause pressure to vary in both time periods, though not surprisingly there are 223 

shifts across time in where pressures are highest (Haruna et al. 2014 discuss the value, for policy, 224 

from an ability to anticipate shifts in pressure, while demonstrating shifts in pressure in Panama). 225 

For Madagascar, the secondary road network has consistent impacts but the pressure frontier is 226 

farther from primary roads in our second time period of deforestation, i.e., during 2000-2005. 227 

Slopes and provinces also have consistent effects − though again smaller in the second period. 228 

Impacts of PAs – OLS Regression  229 

As a first effort to control for differences in site characteristics in estimating PA impact, Table 3c 230 

combines Table 3b’s factors with PAs to explain deforestation in unprotected and protected sites  231 

(we present OLS regressions for easy interpretation; Probit’s marginal impacts are very similar). 232 

Controlling for site differences does affect impact estimates relative to naïve. Not surprisingly to 233 

control for the pre-1990 PAs' locations lowers the PA-impact estimate but it remains positive and 234 

statistically significant, although of course lower for the second time period given lower clearing. 235 

For 1990-2000 deforestation, the estimate of PA impact using controls is a bit more than 6% −  236 

i.e., lower than Table 2 difference in the raw means yet clearly significantly different from zero. 237 

For 2000-2005 deforestation, given lower pressure those same pre-1990 PAs avoid only ~ 1.4% 238 

deforestation. Interestingly, however, for the new 1990-1999 PAs the 2000-2005 impact estimate 239 

is ~ 2.5%, higher than for older PAs and, in fact, much like the difference in raw means. It could 240 

be that actors were better able to anticipate future clearing pressures when creating the later PAs. 241 

Impacts of PAs – Matching  242 

Table 4 shows that matching protected points to the most observationally similar unprotected 243 

ones clearly reduces the differences in characteristics between the protected and control points. 244 
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For instance, distances to roads and slope are significant factors in deforestation and both show 245 

significant differences between protected and unprotected locations that Table 4 shows both fall 246 

(this 'balance' table shows these reductions in difference as raw values and in standardized form).  247 

Based on matched samples, Table 5 shows matching estimates for PA impacts on deforestation 248 

within the pre-1990 PAs (for both 1990-2000 and 2000-2005 deforestation) and 1990-1999 PAs 249 

(2000-2005 deforestation only). For the pre-1990 PAs, the additional (i.e., beyond OLS) control 250 

for differences in characteristics lowers the estimated impacts coefficients for both time periods. 251 

For the 1990-2000 deforestation, for instance, the estimate is on the order of 4% instead of 6%. 252 

Interestingly, suggestive of different dynamics over time in political economy of PAs' locations, 253 

for 2000-2005 deforestation matching correction raises (versus OLS) the estimate for later PAs. 254 

Thus, vis-a-vis pressure, location processes seemed to operate quite differently for the later PAs. 255 

Finally, addressing remaining differences in characteristics between the protected and matched 256 

control points, OLS regressions using only the post-matching protected and unprotected samples 257 

(also Table 5) support all of the conclusions derived from the standard matching impact analysis. 258 

Varied PA Impacts Across The Landscape 259 

Some subsets of PAs have reliably greater impact. From Pfaff et al. 2009 on Costa Rica, e.g., we 260 

might often expect dependable variation in clearing pressure as a function of variation in drivers 261 

and, thus, that well-enforced PAs vary in their impact (since without pressure there is no impact). 262 

Thus, all else equal, if PAs were to be located on flatter lands and to be closer to roads and cities 263 

while at least as well enforced  − perhaps at a cost − then they could have higher forest impacts. 264 

That is the clear prediction from almost any static land-use model (see Pfaff and Robalino 2012, 265 

while Pfaff et al. 2013 and Pfaff et al. 2014 note that political economy modeling is needed too). 266 
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To demonstrate this for Madagascar, Table 6 presents variable 1990-2000 deforestation impacts 267 

of the pre-1990 PAs, as a function of where those PAs are located on the landscape. Specifically, 268 

Table 6 splits those pre-1990 PAs into subsets along three dimensions, or characteristics of sites 269 

that often matter for deforestation pressure: distance to primary road; distance to secondary road; 270 

and distance to urban area. Its two rows always split PAs into those with values: above the mean 271 

calculated for the entire sample, for the indicated landscape characteristic; and below that mean. 272 

The PAs closer to either type of road or the city have estimated impacts essentially twice as large 273 

as for typically lower-pressure locations. Such sites might have higher financial or political costs.     274 

Potential Impacts of Durban Vision Protected Areas 275 

Viewing the recent expansion of Madagascar’s PA portfolio through the lens of the deforestation 276 

drivers and all the previous PA impacts is helpful for understanding how effectively Madagascar 277 

has scaled up their conservation efforts through the Durban Vision. From Tables 2 and 3 above, 278 

the characteristics of the sites of the newest PAs are associated with relatively high PA impacts. 279 

For instance, each successive generation of PAs has lower slopes and the PAs created as part of 280 

the Durban Vision are closer to each of the road types as are the averages for all of the prior PAs.   281 

5. Discussion 282 

For a country with important biodiversity, this analysis adds to a rapidly growing literature that 283 

demonstrates the importance of checking whether outcomes in PAs imply impacts of protection. 284 

For conservation organizations, and for other institutions with overlapping mandates for support, 285 

if good data exist such impact evaluations can be done quickly and cheaply to provide guidance.    286 

However, data with appropriate spatial coverage, and resolution, for the time period of interest, 287 

will not always be immediately at hand. For instance, data for some potential driving factors in 288 
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deforestation were not found for dates before 1990. If those factors responded to siting of PAs, 289 

that could bias our estimates of PA impacts. This motivates ongoing search for additional data − 290 

at the least facilitating robustness tests suggested by the consideration of many such possibilities. 291 

Additional data could also permit extensions, for instance comparing impact across types of PAs 292 

or, with later deforestation data, evaluating not only the location but also the impact of new PAs. 293 

Earlier deforestation data also can help to understand whether the pool of forest shifted over time 294 

such that the currently standing forests, used as controls here, were those facing lower pressures. 295 

Given those limitations, which we believe motivate attempts to extend what we have found here, 296 

we found that protection lowered the 1990-2000-2005 deforestation rates within PA boundaries 297 

in Madagascar, albeit by less than is estimated without matching methods' control for locations. 298 

Impacts are lower during the second time period because there is less clearing for PAs to block. 299 

Nearer to roads and cities, where there tends to be higher deforestation pressures on unprotected 300 

lands, PA impacts are indeed higher, although the same pressures could raise costs at these sites.  301 

Finally, the characteristics of the many new 2003-2008 PAs − created after the Durban Vision − 302 

suggest at least an expansion of the significant PA impacts established by earlier Malagasy PAs. 303 

Maintaining or increasing this will not be easy, especially if global markets focus on resources 304 

found within Madagascar’s PAs. For instance, the heightened demand for rosewood, as well the 305 

illegal extraction from Madagascar’s forests that followed (see discussion in Barrett et al. 2010) 306 

highlights challenges for conserving Madagascar’s biodiversity regardless of land characteristics. 307 

Wherever sources of pressure exist, effective monitoring, legislation, and enforcement will be 308 

required to capitalize on Madagascar’s ongoing positive investment in lands worth conserving. 309 

 310 



 14

Acknowledgements: We are grateful for comments from Meredith Barrett. All errors are ours.  311 

 312 

 313 
References 314 

Abadie, A. and Imbens, G. (2002). Technical report: "Simple and bias-corrected matching 315 
estimators". University of California, Berkeley Department of Economics, 2002. 316 

Abadie, A. and Imbens, G. W. (2006). Large Sample Properties of Matching Estimators for 317 
Average Treatment Effects. Econometrica 74(1), 235-267. 318 

Abadie, A. and Imbens, G. W. (2011). Bias-Corrected Matching Estimators for Average 319 
Treatment Effects. Journal of Business and Economic Statistics 29(1), 1-11, 320 
10.1198/jbes.2009.07333. 321 

Allnutt, T. F., et al. (2009). Madagascar Digital Conservation Atlas Report, downloadable from 322 
http://41.74.23.114:8080/atlas/index2.php?option=com_docman&task=doc_view&gid=30&Itemid=29. 323 

Andam, K. S., et al. (2008). Measuring the effectiveness of protected area networks in reducing 324 
deforestation. Proceedings of the National Academy of Sciences of the United States of 325 
America 105(42), 16089-94, 10.1073/pnas.0800437105. 326 

Angrist, J. and Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's 327 
Companion. Princeton University Press, Princeton, New Jersey. 328 

Barrett, M.A., et al. (2010). CITES Designation for Endangered Rosewood in Madagascar. 329 
Science 328, 1109-10, 10.1126/science.1187740. 330 

Cochran, W. and Rubin, D. (1973). Controlling bias in observational studies: a review. Sankhya, 331 
Ser. A 35, 417–46. 332 

Consiglio, T., et al. (2006). Deforestation and plant diversity of Madagascar's littoral forests. 333 
Conserv Biol 20(6), 1799-803, 10.1111/j.1523-1739.2006.00562.x. 334 

Ferraro, P. J. and Pattanayak, S. K. (2006). Money for nothing? A call for empirical evaluation 335 
of biodiversity conservation investments. PLoS biology 4(4), e105, 336 
10.1371/journal.pbio.0040105. 337 

Ganzhorn, J. U., et al. (1997). The state of lemur conservation in Madagascar. Primate 338 
Conservation 17: 70-86. 339 

Green, G.M and R.W. Sussman (1990). Deforestation History of the Eastern Rain Forests of 340 
Madagascar from Satellite Images. Science 248(4952):212-215. 341 

Haruna, A. , A. Pfaff, S. van den Ende, and L. Joppa (2014).  “Evolving Protected-Areas Impacts 342 
in Panama: impact shifts show that plans require anticipation”. Environmental Research 343 
Letters 9.  344 

Harper, G. J., et al. (2007). Fifty years of deforestation and forest fragmentation in Madagascar. 345 
Environmental Conservation 34(4), 325-333, 10.1017/s0376892907004262. 346 

Jasjeet, S. S. (2011). Multivariate and Propensity Score Matching Software with Automated 347 
Balance Optimization: The Matching package for R. Journal of Statistical Software 42(07). 348 



 15

Joppa, L. N. and Pfaff, A. (2009). High and far: biases in the location of protected areas. PLoS 349 
ONE 4(12), e8273, 10.1371/journal.pone.0008273. 350 

Joppa, L. and Pfaff, A. (2010). Reassessing the forest impacts of protection: the challenge of 351 
nonrandom location and a corrective method. Ann N Y Acad Sci 1185, 135-49, 352 
10.1111/j.1749-6632.2009.05162.x. 353 

Joppa, L. N. and Pfaff, A. (2011). Global protected area impacts. Proc Biol Sci 278(1712), 1633-354 
8, 10.1098/rspb.2010.1713. 355 

Keele, L. J. (2011). rbounds: Rosenbaum bounds sensitivity tests for matched and unmatched 356 
data. Downloadable from http://cran.r-project.org/web/packages/rbounds/rbounds.pdf. 357 

Kremen, C., et al. (2008). Aligning conservation priorities across taxa in Madagascar with high-358 
resolution planning tools. Science 320(5873), 222-6, 10.1126/science.1155193. 359 

Madagascar Vegetation Map (2007). In MADAGASCAR VEGETATION ATLAS (Justin Moat and 360 
P. Smith, Eds.) Royal Botanic Gardens, Kew. 361 

Miller, J. S. and Porter Morgan, H. A. (2011). Assessing the effectiveness of Madagascar’s 362 
changing protected areas system: a case study of threatened Boraginales. Oryx 45(02), 201-363 
209, 10.1017/s0030605310000803. 364 

Mittermeier, R. A., et al. (1990). Conserving the world’s biological diversity Conservation 365 
International,WorldWildlife Fund, Internatonal Union for the Conservation of Nature, World 366 
Resources Institute,World Bank, Washington. 367 

Olson, D. M., et al. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. 368 
BioScience (51), 933-938. 369 

Pfaff, A. , J.A. Robalino, G.A. Sanchez-Azofeifa, K. Andam and P. Ferraro (2009).  “Park 370 
Location Affects Forest Protection: Land Characteristics Cause Differences in Park Impacts 371 
across Costa Rica,” The B.E. Journal of Economic Analysis & Policy: Vol. 9: Iss. 2 372 
(Contributions), Article 5 (http://www.bepress.com/bejeap/vol9/iss2/art5) 373 

Pfaff, A. and J. Robalino (2012). “Protecting Forests, Biodiversity and the Climate: predicting 374 
policy impact to improve policy choice”.  Oxford Review of Economic Policy 28(1):164-375 
179. 376 

Pfaff, A., J. Robalino, E. Lima, C. Sandoval and L.D. Herrera (2013). “Governance, Location 377 
and Avoided Deforestation from Protected Areas: greater restrictions can have lower impact, 378 
due to differences in location”.  World Development  379 
(http://dx.doi.org/10.1016/j.worlddev.2013.01.011). 380 

Pfaff, A., F. Santiago-Avila, M. Carnovale and L. Joppa. "Protected Areas' Impacts Upon Land 381 
Cover Within Mexico: the need to add politics and dynamics to static land-use economics". 382 

R Development Core Team. (2011). R: A Language and Environment for Statistical Computing 383 
R Foundation for Statistical Computing, Vienna, Austria. 384 

Raik, D. (2007). Forest Management in Madagascar: An Historical Overview. Madagascar 385 
Conservation & Development 2(1), 5-10. 386 

Rosenbaum, P. R. and Rubin, D. B. (1983). The Central Role of the Propensity Score in 387 
Observational Studies for Causal Effects. Biometrika 70(1), 41-55. 388 



 16

Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a Control Group Using Multivariate 389 
Matched Sampling Methods That Incorporate the Propensity Score. The American 390 
Statistician 39(1), 33-38. 391 

Rosenbaum, P. R. (2010). Design of observational studies. Springer, New York. 392 

Rosolofoson, R.A., P.J. Ferraro, C.N. Jenkins and J.P.G. Jones (2015). "Effectiveness of 393 
Community Forest Management at reducing deforestation in Madagascar". Biological 394 
Conservation doi: 10.1016/j.biocon/2015.01.027 395 

Rubin, D. B. (1973). The use of matched sampling and regression adjustments to remove bias in 396 
observational studies. Biometrics 29 185–203. 397 

Rubin, D. (1979). Using multivariate sampling and regression adjustment to control bias in 398 
observational studies. J. Am. Stat. Assoc 74, 318–28.Scales, I. R. (2012). Lost in translation: 399 
conflicting views of deforestation, land use and identity in western Madagascar. The 400 
Geographical Journal 178(1), 67-79, 10.1111/j.1475-4959.2011.00432.x. 401 

Rubin, D. (1980). Bias reduction using Mahalanobis-metric matching. Biometrics 36(2), 293–98. 402 

Sekhon, J. S. (2009). Opiates for the Matches: Matching Methods for Causal Inference. Annual 403 
Review of Political Science 12(1), 487-508, 10.1146/annurev.polisci.11.060606.135444. 404 

Sekhon, J. S. and Grieve, R. (2009). A Nonparametric Matching Method for Covariate 405 
Adjustment with Application to Economic Evaluation. Experiments in Political Science 2008 406 
Conference Paper. 407 

Sekhon, J. S. (2011). Multivariate and Propensity Score Matching Software with Automated 408 
Balance Optimization: The Matching Package for R. Journal of Statistical Software 42(7), 1-409 
52. 410 

Sussman, R.W., G.M. Green and L.K. Sussman (1994). Satellite Imagery, Human Ecology, 411 
Anthropology, and Deforestation in Madagascar. Human Ecology 22(3):333-354. 412 

Toillier, A., et al. (2011). Livelihood Strategies and Land Use Changes in Response to 413 
Conservation: Pitfalls of Community-Based Forest Management in Madagascar. Journal of 414 
Sustainable Forestry 30(1), 20-56, 10.1080/10549811003742357. 415 

416 



 17

 417 
 418 

Figure 1 419 
 420 

Past Administrative Regions in Madagascar 421 
 422 

 423 
 424 

425 



 18

 426 
Figure 2 427 
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Malagasy Protected Areas Established Before 2000 429 

 430 

 431 


