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Abstract

Background: About an eighth of the earth’s land surface is in protected areas (hereafter ‘‘PAs’’), most created during the
20th century. Natural landscapes are critical for species persistence and PAs can play a major role in conservation and in
climate policy. Such contributions may be harder than expected to implement if new PAs are constrained to the same kinds
of locations that PAs currently occupy.

Methodology/Principal Findings: Quantitatively extending the perception that PAs occupy ‘‘rock and ice’’, we show that
across 147 nations PA networks are biased towards places that are unlikely to face land conversion pressures even in the
absence of protection. We test each country’s PA network for bias in elevation, slope, distances to roads and cities, and
suitability for agriculture. Further, within each country’s set of PAs, we also ask if the level of protection is biased in these
ways. We find that the significant majority of national PA networks are biased to higher elevations, steeper slopes and
greater distances to roads and cities. Also, within a country, PAs with higher protection status are more biased than are the
PAs with lower protection statuses.

Conclusions/Significance: In sum, PAs are biased towards where they can least prevent land conversion (even if they offer
perfect protection). These globally comprehensive results extend findings from nation-level analyses. They imply that siting
rules such as the Convention on Biological Diversity’s 2010 Target [to protect 10% of all ecoregions] might raise PA impacts
if applied at the country level. In light of the potential for global carbon-based payments for avoided deforestation or REDD,
these results suggest that attention to threat could improve outcomes from the creation and management of PAs.
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Introduction

Initiatives to establish new protected areas (PAs) to conserve

natural landscapes for species habitat and climate-change

mitigation are underway worldwide [1,2]. Yet, with 13% of global

lands already officially under protection, future PA growth is

unlikely to even double the extent of the current global PA

network or reserve system [3]. Investment in new PAs will need to

be efficient, e.g. based upon sophisticated conservation planning

tools [4]. However, many current PAs were not created with a

systematic eye to achieving conservation priorities [5]. To inform

any new investments, here we seek to understand where the past

history of PAs has placed protection to date.

Many goals and constraints influenced past PA locations. Given

that, have we maximized conservation priorities? To maximize

anything, PAs must have impact, i.e. change land-use outcomes.

That is, land use would have to differ from what would have

occurred in a PA-free world. To change the rate of loss of natural

land cover, PAs have to be located where they can prevent forest

clearing [6,7,8,9] or other activities that modify natural habitat.

Yet the common phrase ‘‘rock and ice’’ summarizes a perception

that PA locations are biased towards marginal lands where natural

land cover might remain even without a PA. Of course there may

be good reasons for such a choice of PA location. In particular,

costs of protection could provide an adequate explanation. Often it

may be financially and politically expedient to protect land with

low financial value [10].

Before explaining such choices or considering changing them,

though, we must ask whether the global ‘‘rock and ice’’ perception

is correct. Previous national-level studies suggest the adage has a

basis in reality [11,12,13,14]. Global studies addressing this issue

have also found evidence for PA location bias [1,2,15]. An

influential example was Hoekstra et al.’s [16] results, which showed

a clear bias in protection towards certain biomes and ecoregions.

These highly protected regions were generally those that receive

low levels of land degradation pressure, such as montane

grasslands and shrublands. A recent update of global protection

shows that this unrepresentative distribution of PAs continues

today [3], although each country’s coverage continues to evolve

(Figure 1).

All of these previous global studies have ignored political

boundaries. That is a vital omission. Ecological processes cross

borders but most PAs do not. The Convention on Biological

Diversity’s (CBD) 2010 Target aims to protect 10% of global

terrestrial ecoregions [17], for example, but its national policy

implications are unclear since many ecoregions cross national

borders. Put another way, an often-ignored reality is that the

global PA network is composed of many different national

networks, all of which have different histories and resulted from

a different mix of motivations for conservation. Thus analyzing the
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distribution of every national PA network, as we do here, provides

a large-scale perspective on PA-location biases and it does so at a

politically relevant resolution.

We provide the first comprehensive global assessment of the

distributions across space of all of the national PA networks of any

significant magnitude (.100 km2). We ask whether it is true on

the whole, across many countries, that national protection

networks have evolved over time to be found disproportionately

on higher, steeper, more remote, agriculturally unsuitable lands.

We ask too whether the variation in the level of protection across

the PAs within a national network is correlated with these

indicators of low threat.

Results

IUCN Protection vs. No Protection
First we examine PA distributions within every country that

protects 100 km2 or more of terrestrial surface (147 countries) and

quantify the network’s elevation, slope, agricultural suitability,

distance to roads, and distance to urban areas, as well as its species

richness (see Materials and Methods for further details on the data

and methods used). Then as a first indicator, we calculate the

average values for each variable for both the entire country and

the entire PA network. Comparing the two indicates whether the

network is representative of the country along that dimension.

One way to summarize these statistics is demonstrated in Figure 2

for the United States – a country whose network is discussed in an

influential paper by Scott et al. [12]. It is very clear there that the

US has disproportionately protected lands at higher elevations,

steeper slopes, lower agricultural suitability, and greater distance

from both roads and cities.

For summarizing many countries, additional description is

required. Here, we empirically model the probability that a one

km2 pixel is found within the national PA network as a function of

elevation (in meters) [18], slope (in degrees, derived from [18]),

distance to roads [19] and urban areas [20] (in kilometers), as well

as agricultural suitability [21] (using a 0–9 scale with decreasing

rank). Those are all indicators of potential resource extraction or

agricultural profit [22]. We also included ecoregion-level species

richness [23]. To do this we use a general linear model framework

with a probit link (details of the model can be found in Materials and

Methods). If the network consisted of random locations or non-

random but representative locations within a country, then such

factors would have no power to predict that a pixel is found in the

PA network. If, for instance, within any given country a parcel’s

slope is a significant predictor of that parcel being in the national

PA network, then PAs’ sites are not representative of the country

as a whole.

For all of our variables, we present summaries of such

significance across all countries. This lets us summarize global

trends in national decisions. For each variable, Table 1a shows the

number of countries (of 147) where the variable is a significant

predictor of protection. Only countries with significant results are

shown (so they need not add to 147). A binomial sign test indicates

if the number of significant positives is statistically significantly

different from the number of significant negatives; if not, bias is not

shown.

The majority of national networks are biased towards higher

elevation, steeper slope, and greater distance from roads and cities

(Table 1a & Figure S1). The trend for agricultural suitability was

not significant across all countries (suitability is in decreasing rank,

so that a positive correlation would indicate PAs biased away from

suitable land). Yet it is in line with other variables as a majority of

countries have networks on less suitable lands. A slight majority of

national networks is biased away from the species-rich ecosystems.

Higher vs. Lower Protection
Bias in PA locations could be driven by a particular subset of the

network. Six PA-management categories are defined by the

International Union for the Conservation of Nature (IUCN).

Greater human intervention is permitted as status moves from I to

VI. Put another way, lower-numbered categories are designated

as more protected. Category I-II PAs tend to be large [24,25].

Given that characteristic, as well as the lower permitted levels of

Figure 1. Numbers of countries and the percent of their ecoregions with greater than 10% protection. A, B, C, D, E, F, G each plots the
cumulative number of countries at 20 year increments. PAs with no date of creation in the database occur first in 1900, and remain in each preceding
temporal increment. H) Number of ecoregions versus the percent of a country’s ecoregions protected. No trend is found for countries with many
ecoregions to differ greatly from those with few.
doi:10.1371/journal.pone.0008273.g001

Protected Area Bias
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human intrusion, might they occur on different land than lower

category PAs?

We find (Table 1b & Figure S2) that protected areas in IUCN

categories I and II, i.e. the more highly protected areas, are on

significantly higher and steeper lands further away from roads and

urban centers than are IUCN category III – VI protected areas. The

results for differences in distance to roads and urban centers are also

significant, though less so than the results for slope and elevation.

Species richness and agricultural suitability are not significant

predictors of the category or status of protection. If these categories

imply also higher and lower levels of management effort, then these

results suggest that PAs are trying harder where threat is lower. Also,

high protection status may be taking credit for a lack of clearing that

is due to the undesirability of lands on which it has been placed.

Using a Summary Index
Table 1 summarizes a number of results for each country across

many countries. Further, it does so for two comparisons, protected

versus unprotected and higher versus lower protection status. It

shows dissimilarities, i.e. that protected lands are significantly

different from unprotected lands and higher status lands differ

from lower status lands.

Table 1 cannot, though, summarize how different protected

lands are, in a way that brings together all the differences along the

Table 1. Summary statistics for the individual country models.

A) Protected vs Unprotected B) IUCN I/II vs IUCN III/VI

Countries Positive Negative Countries Positive Negative

Slope 132 107** 25 95 67** 28

Elevation 140 88** 52 96 64** 32

Road Distance 134 108** 26 101 63* 38

Urban Distance 140 107** 33 99 60* 39

Agriculture 132 76 56 99 53 46

Richness 130 50 80* 88 43 45

The left side of the table (A) presents the results for models predicting IUCN Category I – VI levels of protection against no protection and corresponds to Figure S1. The
right side of the table (B) contains results for modeling IUCN Category I or II (most highly protected) within the protected area network and corresponds to Figure S2.
The ‘‘Countries’’ column contains the total number of countries where the corresponding predictive variable (ex: slope) was a significant predictive factor of protection.
‘‘Positive’’ indicates the variable was positively correlated with protection, while ‘‘Negative’’ is the opposite. Statistical significance of the trend was conducted using a
binomial sign test, and ** indicates the trend is significant at the 0.01 level, while * shows significance at the 0.05 level.
doi:10.1371/journal.pone.0008273.t001

Figure 2. A full description of the IUCN I/VI protected area network for the United States. Variables include elevation, slope, distance to
roads, distance to urban areas, species richness, and agricultural suitability. The x-axis corresponds to the variable being measured. The y-axis is the
difference between the proportion of the country at each interval and the proportion of the network at the same interval. Values greater than zero
(dashed horizontal line) indicate a disproportionate level of protection, while values less than zero indicate a disproportionate absence of protection.
Visualizing network distributions in this way allows one to see discrepancies in protection across wide ranges of variables at a high resolution.
doi:10.1371/journal.pone.0008273.g002

Protected Area Bias
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dimensions the table lists (e.g. slope and distance). Further it

cannot show whether the difference between protected and

unprotected lands is more or less than the difference between PAs

with higher and lower protection status.

To make those comparisons, we require a single index of

similarity across all locations. The impact-evaluation literature

regularly employs a probability of receiving intervention [7,8]. Its

analog here, the probability of being in a PA, is useful for us and is

provided by the regressions described in Table 1. Those regressions

examine the predictors of whether a location is protected or not.

Given the results or coefficients from those regressions, one can

explicitly predict the likelihood of being protected for each location

in a country. That likelihood, the product of location characteristics

and the coefficients, is our index.

We find that locations currently within the protected area

networks had on average a 24% chance of being protected

(keeping in mind that on average only 10% of the country is

protected). In contrast, the much larger group of unprotected

locations had an 8% chance. Those percentages, however, are

unweighted averages across many countries that are quite different

in total size (the average country is 8% of the largest country) as

well as in network size. When weighting the likelihood-of-

protection numbers for each country by its national network size,

the protected locations had a 32% chance of being protected while

the unprotected had only a 14% chance. Either way, PAs are on

lands more than twice as likely to be protected than unprotected

lands. That is a considerable difference.

Since weighting clearly matters, we also consider the medians.

For protected locations, the median chance of being protected is

21% while for unprotected locations is it 6%, similar results to

those above in confirming a significant difference. Looked at

another way, looking across all the countries the median ratio of

these two probabilities of being protected (for protected versus

unprotected locations) is 3.0. By this measure of bias in location,

protected lands were three times as likely to be protected as

unprotected lands.

Such an index is most useful for comparison purposes. It can be

used, for example, to examine whether the differences just

discussed are similar to those between higher and lower protection

status (about 2/5 of all protected land, on average, is in higher

status). Using the same probabilities of being protected, we find

that higher status locations had on average a 25% chance of being

protected while lower status had a 20% chance (and the network-

weighted averages are 27% for high status and 25% for lower).

The median probability of protection for high-protection PAs is

18% while the median for lower categorized PAs is 15%. The

median of the ratios of these probabilities is 1.3. This is much less

bias than when we simply compared all protected versus

unprotected lands.

Discussion

Across 147 countries’ national networks, protected areas are

indeed non-randomly located on the landscape. The same types of

biases also hold, although less so, for the more highly protected

area compared with less highly protected areas. All of these results

corroborate prior descriptions of specific PA network biases

towards, for instance, ‘‘rock and ice’’ [12,26]. They are also

relevant for assessing PAs’ conservation impacts.

One area of research where our results are directly relevant is in

the quantification of the ‘‘conservation success’’ or effectiveness of

protected areas. Interest in this area has been growing rapidly

[2,7,25,27,28], and for good reason. Funders want to learn about

the outcomes of their investments, governments want to be

maintaining promises to constituents, and conservation biologists

want their efforts to be worthwhile. Unfortunately, location bias

can confound quantification of impact (see, e.g., Joppa and Pfaff

2009 [6]). A common and reasonable approach to assessing

effectiveness is to compare, say, deforestation in the protected area

with rates outside [29,30]. Yet steep slope, large distance to roads

and cities and in some instances high elevation and low

agricultural suitability can contribute to the inaccessibility of a

landscape and thus lower the probability that land is deforested

[22,31]. Here we show these factors to be overwhelmingly

associated with protection. This can result in claiming land cover

impacts for protection that are actually due to a PA network’s

landscape characteristics.

This same concern applies to the differing impacts across PA

management categories. Location bias means that much of the

observed habitat retention in PA Categories I and II [25] could be

due to land characteristics: PAs in general are on less threatened

land and highly categorized PAs are on a less-threatened subset. It

is worth noting, then, that much of the growth in the global PA

network has been in categories III-VI [5,24]. We show that those

are closer to threats. That could raise impact. Yet such locations

are typically allocated less management effort, to this point, for

strict biodiversity conservation [24].

Such results also naturally raise the question of why some PA

networks are representative while others are not. An exploratory

examination finds no impact of total population or density of

population or GDP on the sign and magnitude of coefficients

reported above. What this likely means is that the issue of where

protection is located is too variable, even within a country or

region, to be easily summarized at a global scale. For example,

PAs within the United States are (on average) preferentially

located on marginal lands [32]. Even so, the National Wildlife

Refuge System (NWRS) targets breeding-bird populations with

certain habitat characteristics and is preferentially located on

lower elevation lands with higher productivity and soil quality

[33]. Thus not only is the global network composed of the national

networks, which have differing dynamics, but also a national

network can have multiple components that operate differently.

This highlights the fact that a more context-specific examination of

PA-location choice will often be required to fully inform policy.

Fortunately, many recent PAs have been (and others will be)

created under consistent and locally contextualized frameworks.

Systematic conservation planning [34] is a rapidly growing

discipline and is increasingly sophisticated in its incorporation of

many factors such as both multiple ecosystem service densities [35]

and costs [34,36]. Algorithms employed in systematic conservation

planning are already capable of maximizing the protection of

highly threatened landscapes, and can handle the necessary trade-

offs between such variables as land procurement costs and number

of species protected or amount of threat abated [34]. Indeed, it is

now common to claim that PAs need to be in systematically

chosen places [37]. Along these lines, our objective in this study is

to provide evidence that the national-level bias within PA networks

is a global phenomenon.

Our results support the idea that targeting and blocking threat

may deserve higher priority in the future creation and manage-

ment of PAs. The issue of locating protection in areas of greatest

threat has received the most attention in the discussion of

biodiversity hotspots [38] and other global prioritization schemes

[39]. Biodiversity hotspots are regions around the world with high

species richness and correspondingly high levels of habitat

destruction. Myers et al. [38] argue that placing effective protection

in these regions is a logical way to protect significant numbers of

species that, in the absence of protection, would likely be lost. We

Protected Area Bias
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agree with this concept, and our results highlight the increasing

realization that future PA allocation must differ from historic

protection strategies.

Methods

All datasets are global in scale, in raster (grid) format, and

projected into Albers Equal Area projection at a one km2

resolution. We used ArcGIS 9.1 to harmonize projections, cell

size, and extent and used Python 2.4 in order to remove all marine

areas and to create individual text files for each variable for each

country. All further analyses were done in R 2.7.1 [40].

The analytical framework we used was a general linear model

(package ‘‘glm’’ in R 2.7.1) with a probit link because the

regressions we run here involve binary outcomes. In the first set of

regressions (for Table 1a), we are explaining whether or not a

location is in the nation’s protected area network. In the second set

of regressions (for Table 1b), we are examining only the locations

that are in the network and explaining whether or not a location is

in a protected area that is accorded higher status. One important

point is that the coefficients for a given variable not only need not

be the same in those regressions and could even be different in sign

(for instance, protection may be biased towards steep slopes but,

within the protected network, higher status could be biased

towards flat areas). Thus Table 1a and 1B do not have similar

results by construction. These probabilities were generated using

the ‘‘predict’’ command, along with the coefficients from the

original regression models, in the ‘‘stats’’ package in R 2.7.1.

Information on PA location came from the 2007 World

Database on Protected Areas (WDPA) [41]. Only PAs classified

by the International Union for Conservation of Nature (IUCN) in

categories 1 through 6, and only countries with PA networks of

100 km2 or more, were included. When two PAs overlapped, we

assigned that area the highest IUCN classification of the two. Due

to high potential error rates [3], PAs without polygon boundaries

(i.e., point representation only) were not included.

For comparisons across different management categories, we

included only countries with 100 km2 or more of categories I – II

and 100 km2 or more of categories III – VI. To analyze protection

over time (Figure 1), we used information included in the WDPA

on date of PA creation. When analyzing over time, PAs with no

date were included in each temporal step, distributing the error

uniformly over the analysis.

We obtained elevation data from the Shuttle Radar Topogra-

phy Mission (SRTM) [18]. The source for this data set was the

Global Land Cover Facility (www.landcover.org). The SRTM

gathered elevation data on a near-global scale, generating a very

complete high-resolution elevation database. We calculated slope

values from the SRTM elevation dataset. All slope values are

degrees from horizontal. Distance to roads was calculated from a

vector road network extracted from the VMAP Level0 dataset

[19]. While the quality of this data is variable it is the only freely

available global road dataset to characterize the global road

network. Distance to urban areas was calculated using the Gridded

Rural Urban Population dataset (GRUMP) [20], which provides a

gridded and global extent of urban population. Agricultural

suitability was taken from a dataset provided by the International

Institute for Applied Systems Analysis [21]. The dataset (plate 28)

incorporates climate, soil type, land cover, and slope of terrain to

measure agricultural suitability, ranking each grid cell from 0 (no

constraints) to 9 (severe constraints). We used the World Wide

Fund for Nature (WWF) Ecoregions product to determine

ecoregion type [23]. The Ecoregions product delineates 8

biogeographic realms, 14 biomes, and 867 ecoregions. Included

in the WWF Ecoregions project are data on terrestrial vertebrate

species richness. These data encompass more than 26,000

terrestrial vertebrates (amphibians, reptiles, birds, and mammals)

and were gathered from literature, expert opinion, and online

datasets. Richness is at the resolution of ecoregion.

Supporting Information

Figure S1 Global maps of predictors of all categories of

protection for elevation, slope, distance to roads, distance to

urban areas, agricultural suitability, and species richness. Red

indicates that the variable was a significant and positive factor in a

regression model explaining protection. Yellow shows a significant

and negative association, black indicates the variable was not a

significant predictor for that country, while grey shows those

countries with less than 100 km2 of protected area. See Table 1a

in the main text for the summary statistics attached to these results.

Found at: doi:10.1371/journal.pone.0008273.s001 (3.01 MB TIF)

Figure S2 Global maps of predictors of IUCN Category I or II

protection within the entire protected area network for a country

elevation, slope, distance to roads, distance to urban areas,

agricultural suitability, and species richness. Red indicates that the

variable was a significant and positive factor in a regression model

explaining protection. Yellow shows a significant and negative

association, black indicates the variable was not a significant

predictor for that country, while grey shows those countries with

less than 100 km2 of protected area. See Table 1b in the main text

for the summary statistics attached to these results.

Found at: doi:10.1371/journal.pone.0008273.s002 (2.93 MB TIF)
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