Press "Enter" to skip to content

Tag: matching

Reassessing the forest impacts of protection: The challenge of nonrandom location and a corrective method

Lucas Joppa, Alexander Pfaff
Ann. N.Y. Acad. Sci. 1185 (2010) 135–149

PDF link iconProtected areas are leading tools in efforts to slow global species loss and appear also to have a role in climate change policy. Understanding their impacts on deforestation informs environmental policies. We review several approaches to evaluating protection’s impact on deforestation, given three hurdles to empirical evaluation, and note that “matching” techniques fromeconomic impact evaluation address those hurdles. The central hurdle derives from the fact that protected areas are distributed nonrandomly across landscapes.Nonrandom location can be intentional, and for good reasons, including biological and political ones. Yet even so, when protected areas are biased in their locations toward less-threatened areas, many methods for impact evaluationwill overestimate protection’s effect. The use ofmatching techniques allows one to control for known landscape biases when inferring the impact of protection. Applications of matching have revealed considerably lower impact estimates of forest protection than produced by other methods. A reduction in the estimated impact from existing parks does not suggest, however, that protection is unable to lower clearing. Rather, it indicates the importance of variation across locations in how much impact protection could possibly have on rates of deforestation.Matching, then, bundles improved estimates of the average impact of protection with guidance on where new parks’ impacts will be highest.While many factors will determine where new protected areas will be sited in the future, we claim that the variation across space in protection’s impact on deforestation rates should inform site choice.

 

Comments closed

Measuring the effectiveness of protected-area networks in reducing deforestation

Kwaw Andam, Paul Ferraro, Alexander Pfaff, Juan Robalino, G. Arturo Sanchez-Azofeifa
PNAS 105(42):16089-16094

PDF link iconGlobal efforts to reduce tropical deforestation rely heavily on the establishment of protected areas. Measuring the effectiveness of these areas is difficult because the amount of deforestation that would have occurred in the absence of legal protection cannot be directly observed. Conventional methods of evaluating the effectiveness of protected areas can be biased because protection is not randomly assigned and because protection can induce deforestation spillovers (displacement) to neighboring forests. We demonstrate that estimates of effectiveness can be substantially improved by controlling for biases along dimensions that are observable, measuring spatial spillovers, and testing the sensitivity of estimates to potential hidden biases. We apply matching methods to evaluate the impact on deforestation of Costa Rica’s renowned protected-area system between 1960 and 1997. We find that protection reduced deforestation: approximately 10% of the protected forests would have been deforested had they not been protected. Conventional approaches to evaluating conservation impact, which fail to control for observable covariates correlated with both protection and deforestation, substantially overestimate avoided deforestation (by over 65%, based on our estimates). We also find that deforestation spillovers from protected to unprotected forests are negligible. Our conclusions are robust to potential hidden bias, as well as to changes in modeling assumptions. Our results show that, with appropriate empirical methods, conservation scientists and policy makers can better understand the relationships between human and natural systems and can use this to guide their attempts to protect critical ecosystem services.

 

Comments closed